首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20802篇
  免费   3297篇
  国内免费   977篇
电工技术   212篇
技术理论   2篇
综合类   1214篇
化学工业   6890篇
金属工艺   579篇
机械仪表   290篇
建筑科学   1322篇
矿业工程   880篇
能源动力   813篇
轻工业   1978篇
水利工程   201篇
石油天然气   1825篇
武器工业   304篇
无线电   3131篇
一般工业技术   4307篇
冶金工业   751篇
原子能技术   95篇
自动化技术   282篇
  2024年   49篇
  2023年   661篇
  2022年   557篇
  2021年   900篇
  2020年   1001篇
  2019年   950篇
  2018年   787篇
  2017年   944篇
  2016年   952篇
  2015年   975篇
  2014年   1470篇
  2013年   1411篇
  2012年   1577篇
  2011年   1530篇
  2010年   1145篇
  2009年   1156篇
  2008年   937篇
  2007年   1250篇
  2006年   1186篇
  2005年   1022篇
  2004年   825篇
  2003年   727篇
  2002年   530篇
  2001年   455篇
  2000年   390篇
  1999年   288篇
  1998年   218篇
  1997年   212篇
  1996年   168篇
  1995年   144篇
  1994年   138篇
  1993年   95篇
  1992年   81篇
  1991年   69篇
  1990年   50篇
  1989年   29篇
  1988年   18篇
  1987年   25篇
  1986年   16篇
  1985年   31篇
  1984年   17篇
  1983年   16篇
  1982年   16篇
  1981年   5篇
  1980年   11篇
  1979年   6篇
  1978年   4篇
  1976年   3篇
  1974年   3篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Spirobifluorene (SBF) is one of the most important scaffolds used in the design of organic semi-conductors (OSCs) for electronics. In recent years, among all the structures developed for these applications, SBF dimers have been highlighted due to their great potential in thermally activated delayed fluorescence and in phosphorescent organic light-emitting diodes. Attaching two SBF units generate 10 dimers, each possessing its own structural specificity, which in turn drives its electronic properties. These ten SBF dimers are gathered herein. Understanding how the molecular assembly determines the electronic properties has been one of the pillars of organic electronics. This is the goal of this article. As positional isomerism is a key tool to design OSCs, defining the design guidelines for the SBF scaffold appears of interest for the future of this building block. Herein, the importance of the two main parameters involved in the electrochemical and photophysical properties, namely the nature of the phenyl linkages and the steric congestion between the two SBF units is discussed. The combination of these two parameters drives the electronic properties but their respective weight is different as a function of the regioisomer involved or of the property considered (frontier orbitals energy level, absorption, fluorescence, phosphorescence).  相似文献   
12.
Computational screening was employed to calculate the enantioseparation capabilities of 45 functionalized homochiral metal–organic frameworks (FHMOFs), and machine learning (ML) and molecular fingerprint (MF) techniques were used to find new FHMOFs with high performance. With increasing temperature, the enantioselectivities for (R,S)-1,3-dimethyl-1,2-propadiene are improved. The “glove effect” in the chiral pockets was proposed to explain the correlations between the steric effect of functional groups and performance of FHMOFs. Moreover, the neighborhood component analysis and RDKit/MACCS MFs show the highest predictive effect on enantioselectivities among the four ML classification algorithms with nine MFs that were tested. Based on the importance of MF, 85 new FHMOFs were designed, and a newly designed FHMOF, NO2-NHOH-FHMOF, with high similarity to the optimal MFs achieved improved chiral separation performance, with enantioselectivities of 85%. The design principles and new chiral pockets obtained by ML and MFs could facilitate the development of new materials for chiral separation.  相似文献   
13.
The development of highly efficient nοn-nοble meta? catalysts for (ОRR) in PEMFCs is at the heart of the research, yet their performance is not satisfactory. The Fe–N active sites enclosed in carbon matrix are generally agreed to be the most promising active sites for ORR. In view of this, further effort is made to increase the Fe–N active sites. Here we present the fabrication of novel FeNi bimetallic electrоcatalyst obtained from ZIF, which consists of FeNi nanоallоys incorporated in N-doped carbon (FeNi-NC) featuring carbon nanotubes and porous carbon demonstrates outstanding results for ОRR. The Fe–N and Ni–N active sites synergistically enhance the ORR activity of FeNi-NC catalyst. The FeNi-NC showed remarkable performance in KОH with the half-wave and onset potential of 0.89 V and 0.99 V vs RHE, respectively. This catalyst shows exceptional stability in methanol equivalent to Pt/C commercial. The FeNi-NC retained 71%, while Pt/C commercial retained only 59% of its original current density. The exceptional stability and activity might be associated with the interplay among FeNi active sites and N-doped carbon, the distinct nanо-structure made up of porous carbon and carbon nanotubes with a high graphitization degree.  相似文献   
14.
Water electrolysis is the most clean and high-efficiency technology for production of hydrogen, an ultimate clean energy in future. Highly efficient non-noble electrocatalysts for hydrogen evolution reaction (HER) are desirable for large scale production of hydrogen by water electrolysis. Especially, exposing as many active sites as possible is a vital way to improve activities of the catalysts. Herein, a series of new hydrangea like composite catalysts of ultrathin Mo2S3 nanosheets assembled uprightly and interlacedly on N, S-dual-doped graphitic biocarbon spheres were facilely prepared. The unique structure endowed the catalysts highly exposed edge active sites and prominently high activities for HER. Especially, the optimized catalyst Mo2S3/NSCS-50 exhibited as low as 106 mV of overpotential at 10 mA/cm2 (denoted as ?10). The catalyst also showed low Tafel slope of 53 mV/dec, low electron transfer resistance of 34 Ω and high stability evidenced by the result that the current density only attenuated 11.7% after 10 h i-t test. The catalyst has shown broad prospect for commercial application in water electrolysis.  相似文献   
15.
Zinc cadmium sulfide (ZnxCd1?xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1?xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1?xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1?xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1?xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.  相似文献   
16.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
17.
Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.  相似文献   
18.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
19.
Hydrogenation of dibenzyltoluene (DBT) is of great significance for the application in liquid organic hydrogen carriers (LOHCs). We successfully develop Mg-based metal hydrides (Mg2NiH4, MgH2, and LaH3) reactive ball-milling for the hydrogenation of DBT. Mg-based metal hydrides milled with 500 min exhibit the best catalytic activity, the hydrogen uptake of DBT can reach 4.63 wt% at the first 4 h and finally achieve 5.70 wt% through 20 h, which is the first time to use hydrogen storage material as a catalyst for the hydrogenation of DBT. The excellent catalytic hydrogenation performance of Mg-based metal hydrides mostly originates from numerous catalytic activity centers formed at the surfaces of Mg2NiH4 nanoparticles in the MgH2 matrix. Inspired by this mechanism, more general metal hydrides can be explored for catalyzing the hydrogenation of LOHCs. The new application of Mg-based metal hydrides is beneficial to developing efficient LOHC based hydrogen storage systems and offers novel insights to hydride-based catalysts.  相似文献   
20.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号